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AIlItnct-The title problem is treated, under the conditions of frictionless and completely adhesive
contact, within the context ofincremental elasto-p!asticity. The analysis employs a constant-ltrain
triangle, finite element code, together with a new grid expansion tec:hDique which aids com
putational efticicncy. Preliminary results are praented and co~pared with the classical elastic
solution for the first load step and with a set of experimental results for subsequent load steps;
these comparisons demonstrate that the approach has the necessary resolution to reliably determine
further results of physical importance.

INTRODUCTION

Contact problems concern the determination of the responses induced in two solids when
they are pressed together. Such problems occur often in engineering so that the literature
is rich in related investigations; Kalker(l] gives a general review through 1977.

The contact problem of interest here concerns the stresses and deformations that
accumulate when a sphere is slowly pressed normally into a relatively soft half-space. This
configuration most closely reflects the physical situation encountered in the Brinell
hardness test, a procedure for estimating the hardness of materials appealing to metal
lurgists in its simplicity (a good description of hardness testing may be found in [2], Chap.
11). The configuration in addition has implications for the effects of ball bearings on
bearing races as discussed by Tyler, Burton and Ku[3], and can be used to aid
understanding of the mechanisms involved in particulate erosion at sufficiently low speeds
as in Follansbee, Sinclair and Williams[4]. To a lesser extent because of the impact speeds
involved, this last use can also be applied to shot-peening operations (see, e.g. Almen and
Black [5], Chap. 6 for specifics of such prestressing). In all, this contact problem is of some
significance in engineering.

There have been quite a number of studies made of the problem dating back over the
last century; Tabor's book [6], though somewhat out-of-date now, remains an outstanding
commentary and Johnson[7] provides an insightful review to 1982. Probably the earliest
contribution is Hertz's classical elastostatic solution [8] for the frictionless normal contact
of two spheres, one of which can be taken in the limit as a half-space. In many practical
cases, however, the indentation is such that yielding occurs in the substrate, limiting the
value of .his elastic solution.t One of the first attempts to incorporate plastic flow is the
slip-line treatment furnished by Ishlinsky[9] (see also Tabor[6], Chap. 4). While the
extension of slip-line theory for plane geometries to the axisymmetric instance has since
been justified by Shield[IO], the absence of any elastic deformations whatsoever makes it
impossible to track the responses as they proceed from purely elastic to predominantly
plastic using this theory. One means of overcoming this shortcoming is to use the theory

tlndeed, in an experiment described subsequently in this paper, yielding first occurs when a hard spherical
indenter ofdiameter 1/16 in. (1.S9mm) is pressed into a steel surface with a load as small as 1O- 3 Ibf(4 x 10- 3 N).
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of incremental elasto-plasticity which includes both elastic and plastic deformations and
has the further attribute of admitting strain-hardening. Unfortunately these improvements
are at the expense of tractability so that attempts reported to analyze the problem within
this theory are numerical, for the most part using the finite element method; see Hardy,
Baronet and Tordion[II], Lee, Masaki and Kobayaschi[l2] and the references contained
therein. Even with recourse to numerical methods the problem resists solution: Hardy et
al. [II] usc a fine finite element grid which captures the critical field quantities with sufficient
resolution but, because of the attendant computational effort, severely limits the extent to
which the half-space can be loaded in excess of elastic; Lee et a/.[12] on the other hand
take the loading forward to the higher levels experienced in practice but in so doing
sacrifice the resolution of a fine grid, thereby introducing a considerable amount of
numerical noise into their results. What we seek to do here is to treat the problem within
incremental elasto-plasticity with a finite element grid of sufficient resolution and accuracy,
yet to take the calculations through to the point of including the upper load levels normally
encountered in applications.

In meeting our objective we are aided by a new generation of computers since [11, 12J
and by a straightforward but efficient expansion technique for the finite element method:
this last maintains resolution comparable to that of Hardy et at. [11] while reducing
computation times by about an order of magnitude. Together these advances enhance
computational capability sufficiently to enable calculations to be carried forward to higher
loads assuming frictionless and completely adhesive contact, thereby bounding the effects
of friction. Nonetheless, the approach still entails a significant computational effort, one
that other analysts may well not welcome redoing in order to obtain specific information
of interest to them. Accordingly we attempt to furnish as comprehensive a set of results
as possible in a second paper; here we describe the method of analysis and those results
which allow an evaluation of its reliability.

We begin in Section I by formulating the class of problems considered, then describe
how the analysis is carried out in Section 2. Finally, in Section 3 we present selected results
and an experimental comparison with a view to validating the approach.

I. FORMULATION
Here we set down a class of problems which addresses the determination of the stresses,

strains and displacements that accumulate in an initially undisturbed, elasto-plastic,
half-space when a rigid sphere is slowly pressed normally into its surface.

To this end let (x, y, z) be rectangular cartesian coordinates with origin 0 such that
the surface of the half-space .1t' is formed by the xy-plane with z positive into .1t' (Fig.
t). Further let (r, e, z) be cylindrical polar coordinates related to the rectangular
coordinates by

x = r cos e, y= r sin e, z = z (0 S r < 00,0 S e< 2n, - 00 < z < (0). (1.1)

Thus

.1t' ={(r, e, z)IO S r < 00,0 S e< 2n, 0 < z < oo}. (1.2)

At some time t > 0, a rigid sphere of radius R indents the half-space under load P to the
extent that contact occurs on a circle centered on 0 with radius a. That is, if OJ.1t' is the
contact region and 02.1t' the half-space surface free from contact, we have

01.1t' = {(r, 8, Z)IO S r < a, 0 S e< 2n, z = O}, (1.3)
02.1t'= {(r, 8, z)o <r <00, Os6 <2n, z =O}.

We seek then, the axisymmetric stre~s II =(lI" (19' liz, fro)' strains £ =(£" 4, i:, Yrz) and
displacements II = (u, w), as functions of r, z throughout .1t' for all time t > 0, resulting
from the accumulation of their corresponding rates in accordance with

II =J: adt, l =J: idt, II =J: lidt, (1.4)
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z

Fig. I. Geometry and coordinates for the indented half-space

on Jt', wherein the rate quantities a=(u" Us, U" i,,), i = (i" £s, i" j,,), Ii = (u, w) are to
satisfy the following requirements.t The axisymmetric, stress-rate, equations ofequilibrium,
in the absence of body forces under the assumption of quasi-static response,

au, ai" U, - Us 0-+-+--=or oz r '
au: oi,: i,: 0-+-+-=oz or r '

(1.5)

on Jt' for t > O. The flow rule for a homogeneous and isotropic, elastic/incompressible
plastic solid complying with von Mises' yield criterion and Drucker's hypothesis,

u, = 2Jl[«ae + 1) - fJs~)i., + (ae - fJs,ss>4 + (ae - fJs,s,)i.: - fJs,s"j,:),

Us =2Jl[(ae - fJsss,)£, +«ae + 1) - fJs~)is + (ae - fJssS:)i., - fJssS"j,,),

(1.6)

u: =2Jl[(ae - fJs,s,)i., + (ae - fJs,ss>4 + «ae + 1) - fJs~)£: - fJs,s"j,,),

i,: =2Jl[ - fJs,.s,i, - fJs,.sU£s - fJs,.s:£, + (1/2 - fJs~)j,,),

on Jt' for t > 0: here s" Ss, s:, s" are the normalized stress deviators,

s, =(2u, - Us - u,)/(3j3to), Ss = (2us - u, - u,)/(3j3to),

S, =(lu, - u, - us)/(3j3to), S" = t,,/(3j3to),

with to being the octahedral shear stress,

and «, fJ are material constants,

ae =v/(1 - 2v), fJ =Jl/(P + Jlp),

tThe usual notation for the stress and strain components is employed and II, "' are the displacements in the
r, z directions respectively; throughout. a dot atop a quantity indicates the corresponding rate.
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with v being Poisson's ratio, JI the shear modulus and JIp the plastic octahedral shear
modulus defined by JIp = i o/2i.o, where i.o is the octahedral plastic strain rate, the analogue
of i o. The strain-rate /displacement-rate relations for infinitesimal strain rates,

. U
£11=-'

r

. ow. ou ow
£z = oz' y,z =oz + or'

on Je for t > O. The contact conditions under the rigid sphere,

w=L1w,

(1.7)

(1.8)

on OtJe for t > 0, wherein .1w is the prescribed rate of increase of w, constant throughout
the contact region, in conjunction with either

u= 0 or irz = 0, (1.9)

on OtJe for t > 0, the first modelling adhesive contact (slip completely restrained) while
the second approximates lubricated contact (perfectly smooth). The stress..jree conditions
on the remainder of the half-space surface,

(l.JO)

on 02Je for t > O. And, finally, the conditions at infinity which take the displacements to
remain zero there,

(1.11)

on Je.
Several comments concerning the modelling underlying the problem class formulated

are in order. First, the quasi-static response of a half-space can be physically representative
of the dynamic indentation of finite targets when their extent is an order of magnitude
greater than the ultimate contact radius induced, yet the duration ofindentation is an order
of magnitude longer than the time taken for the leading elastic wavefront to traverse the
target.t In practice it is somewhat surprising how many apparently highly transient
situations comply with these requirements and are therefore amenable to treatment as
quasi-static. Second, the usual inverse approach is adopted to overcome the geometric
non-linearity caused by the conforming contact, that of not knowing the contact radius
a priori for a given load; thus a, aare in effect set in (1.8) via prescription of OIJe and
P backed out. Third, an approximation, reasonable for a2/R 2 4. 1, is involved in the
lubricated instance in (1.8), (1.9) where cylindrical coordinates are used instead of the local
spherical coordinates needed for an exact, but less tractable, statement. The intent of the
different contact conditions in (1.9) is to bound the effects of friction. Last, the
simplification ofa rigid spherical indenter is appropriate when the response of the indented
half-space is of concern rather than that of the indenter, and is realistic for actual
configurrdons in which the indenter experiences relatively little total-elastic plus plastic
deformation. That is, in instances in which there is significant plastic flow, when the
indenter is sufficiently relatively hard so as not to yield appreciably.

Turning to the nature of the problem class at hand, we note that the quasi-static
assumption means that, although relationships change with time, they are independent of
the time scale. Hence, in essence, we are faced with solving for the ten rate, or incremental,
quantities in ti, E, Ii, as functions of the two variables r, z, satisfying the quasi-linear system

tThis is basically an adaptation of Love's criterion ({l3], Section 139).
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of partial differential equations (1.5}-(1.7) together with the conditions (1.8}-(1.I1}-a task
almost certainly intractable to any purely analytical approach. Accordingly we look to
numerical solution methods in what follows and, to this end, require the specification of
the requisite material constants· for a particular problem before proceeding further. For
the purposes of this paper a single material for experimental comparison suffices, the
actual material chosen being 304L stainless steel. Thus v = 0.28, IJ = 10.9 X 103 ksi
(75.4 x 103 MPa) and IJ, is provided in effect by the stress-strain curve (Fig. 2). Implicit
in the definition of IJ, is a limiting value of to which heralds the onset of plastic flow;
initially this is the octahedral yield stress f y = 16.6 ksi (lIS MPa), but as the mat~rial work
hardens this quantity is updated to take on the value attained locally in accordance with
the stress-strain curve. With these details now in place we next move on to the solution
technique to be used.

2. ANALYSIS

In this section we consider the application of an elasto-plastic, finite element code to
the contact problem of interest, beginning with a discussion of element selection and
arrangement, continuing with a description of the procedure used to track the indentation
which includes a simple yet effective expansion technique, and closing with a summary of
the calculations performed.

The quasi-linear nature of the governing equations in the preceding formulation
enables an energy principle-the analogue of the principle of minimum potential energy
in elasticity-to be established for the incremental field quantities of elasto-plastic flow.
This principle forms a natural basis for finite element methods (FEM) and several codes
exist which implement this type of FEM (see, e.g. [14]). Underlying the approach in these
codes is the discretization of the continuum involved and a number of elements for this
purpose are available. Basically the performance of the various elements can be classified
in the following manner: with a constant approximation to the stress field throughout an
element the errors in the stresses decay as O(h), where h is a lineal measure of element
size, provided the stresses themselves are continuous; with a complete linear representation
of the stresses in an element the errors decay as O(h 2) provided the stresses together with
their first derivatives are continuous; with a complete quadratic representation errors decay
as O(h 3

) provided the stresses are twice continuously differentiable; and so on.t In general,
the smoother the problem the more advantageous it is to employ higher-order elements.
However, if a high-order element is used on a problem which does not meet its continuity
requirement then not only can convergence be below the normal rate of that element, but

o~ ~,...--_

0.0 0.1
·0

Fig. 2. Octahedral stress-strain curve for 304L stainless steel

tA more detailed account of element convergence may be found in (IS), Section 2.2.
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it can also be below the rate normally achieved with a lower-order element. Consequently
we let the expected continuity in our problem dictate the element to be used.

In the initial stages of indentation our lubricated contact problem is elastic so that
Hertz's solution [8] applies and shows that the only loss of continuity occurs at the edge
of the contact region where t1 = O{(jA) as () -+0, () = J{r - a)2 + Z2, with A. = 1/2. Hence
the stresses there are continuous but not continuously differentiable and the situation
cannot be expected to improve for the adhesive contact problem. Moreover, while it is not
known precisely how this behavior is modified by the presence of plastic flow, studies, such
as those performed by Hutchinson [16], Rice and Rosengren [I 7], indicate that), probably
decreases but only slightly, so that it seems likely that the first derivatives of the stress field
remain discontinuous. As a result we choose the axisymmetric, constant-stress triangle as
the element for the present problem.

To discretize the half-space using these elements we first exploit the axisymmetry of
the problem to confine attention to a quarter-plane, say

~ = {{r, (J, z)IO < r < 00, (J =0, 0 < z < oo}. (2.1)

Each triangular element within this region really represents a hoop of triangular
cross-section, points in which maintain a fixed distance from the z-axis. Next we must limit
the extent of ~ to be discretized. Since it is reasonable to expect material remote from the
contact region not to yield and, by Saint-Venant's principle, to be influenced for the most
part by the load P, it is to be anticipated from the Boussinesq solution that the stresses
go to zero in accordance with O{Pa21p 2), the displacements in accordance with O{Palp ),
as Pla .... oo, P =Jr2+ Z2. Hence, because resolution to within about 1% certainly suffices
for most engineering purposes, we restrict discretization on ~ to a quadrant of a circle of
radius A """ 100a. Within this quadrant some graduation of element sizes is desirable in
order to efficiently capture the variations present. As field quantities are generally smoother
once plastic flow has started, we again draw on Hertz's elastic solution [8] to provide what
are probably the most severe gradients and adjust the grid refinement so that the
element-to-element changes in the elastic stresses are approximately equal. There is, in
addition, a need while constructing this non-uniform grid to maintain locally isotropic
arrangements of the elements since the material being modelled is itself isotropic, i.e. to
generate repeating, similar, element patterns with nodes which see nearly the same element
distribution in all directions. And finally, there is a need to place as many nodes in the
contact region as possible since, when each node is brought into contact as indentation
proceeds, the half-space experiences an apparent sudden jump in contact extent giving rise
to an artificial unloading, and it is desirable to keep these non-physical byproducts of the
discretization as small as possible.t These last considerations are somewhat at variance
with designing a grid or map which entails a reasonable level of computational effort; the
compromise arrived at is shown in Fig. 3 wherein the map has 497 elements and 287 nodes
or 574 degrees of freedom, features nodes alternately at the centers of "union jacks" or
"kites" throughout most of the inner critical region, and has additional refinement in the
contact region.

We take the conditions on the outer circular boundary of the grid to be

IV = 0, t,= 0, (2.2)

on ~ for p = A, where T, is the traction in the radial direction. The first of (2.2) reflects
the latter infinity condition of (1.11) and assures the existence of self-equilibrating nodal
forces in the z-direction. The second of (2.2) is a departure from the most obvious, namely

tin fact failure to preserve a grid with an almost periodic, self-similar. isotropic arrangement and sufficie~t
refinement in the contact region resulted, in an early attempt at an FEM analysis of the present problem, In

extraneous element-to-element ftuctuations to such an extent that the element stresses were rendered physicalIy
meaningless at quite moderate load levels even though the elastic solution ~as. accurately reproduced .in~tially.
We do not completely understand the source of such numerical noise at thiS time and a fuller appreciation of
how best to alleviate it is a subject of ongoing research.
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A B

Fig. 3. Finite element grid: (A) Inner region; (B) Outer region

Ii = 0, so as to avoid the introduction of spurious singularities at the intersection of the
circular boundary with the upper free surface. Along the upper surface the stress-free
conditions (1.10) are enforced outside the contact region (0 < r < A, z - 0) while one of
the contact conditions of (1.8), (1.9) is enforced within the contact region (0 < r < 0,

z =0). On the remaining straight boundary symmetry conditions are applied, viz.

u-0, in=O, (2.3)

on r = 0,0 < z < A.
Of course the contact region on which (1.8), (1.9) are applied is not constant; however,

the FEM solution algorithm calls for incremental loading and this incremental nature
facilitates handling the expanding contact area. If, for a given load increment, the
accumulated displacement w of the first node outside the current contact region is
computed to be less than the displacement of the corresponding location on the rigid
sphere, then the contact area is enlarged to include this node and the load increment
recomputed.

The specifics of how loads are increased are as follows. The initial indentation is
adjusted so as to just induce yielding in a single element. Actually this first load step
represents the accumulation of a number of steps satisfying (1.8) which, since the problem
is linear in the elastic state, can be applied directly in a single step by setting

(2.4)

on z = 0, 0 < r < o. Thereafter the indentation diameter is successively increased by 2!%,
that is, ti - 0.0250 so that ti itself increases. When the contact area expands to the point
of including a further node, ti is reset to its original level and the new node brought into
contact more gradually so as to reduce numerical noise. The process is then repeated to
bring in the next node, and so on.

o As indentation proceeds our FEM grid in effect shrinks, its radius A no longer remains
of the order of 1000, and the degree to which (2.2) reflects the infinity conditions becomes
an issue. Further, while the greatest field gradients are initially being tracked by the inner
smaller elements, as yielding proceeds the fields represented by these elements become
relatively uniform and the steepest gradients radiate out to the- coarser elements
potentially an inefficient discretization. To avoid these shortcomings we employ a
straightforward expansion technique which is most readily viewed as a periodic scaling up
of the map so that it returns to its original extent ofapproximately 1000. In actuality there
is no need to alter the grid size, but merely to transfer field quantities back to their
corresponding points. The quantities transferred are the element stress and strain
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components, the nodal displacements and forces, the element, octahedral, plastic stresses,
strains and moduli, the plastic work in the elements, and reference octahedral stress values
(equal to the octahedral yield stress for unyielded elements, the present value for elements
currently undergoing plastic flow, and the highest previous value for elements currently
unloading elastically). The self-similar nature of the grid refinement aids transfer, many
of the original exterior elements simply assuming the identity of an interior element. An
interpolation procedure is required for those "post-expansion" elements which do not
coincide exactly with an original element but rather take on the information contained by
a number of elements. Consistent with the approximation implicit in axh,ymmetric
constant-stress elements we choose a scheme which reduces to linear interpolation in
simple instances and which recognizes the volume truly represented by elements (see [18],
Appendix I for details). Those post-expansion exterior elements and nodes which have no
counterparts prior to expansion are taken to be in the virgin state. The actual point at
which rescaling is undertaken is when the contact region has grown to 2.4 times its initial
radius. For the analysis at hand, implementation of this expansion technique lead to a
reduction in computation time of an order of magnitude without loss of resolution.

Using the foregoing approach a number of calculations can be examined with a view
to validating the analysis. An obvious one is to compare the initial elastic load step for
the lubricated case with Hertz's solution [8J. For this step too, the expansion technique
can be prematurely applied to furnish a sequence of grids in effect and thus enable
convergence to be examined. As plastic flow commences, though, no elasto-plastic exact
solution appears to be available for checking against. Nonetheless, by setting aequal to
0.05a, 0.025a, 0.0125a, convergence with load increment can be considered, and by
performing the calculations with the real material values for 304L stainless steel com·
parison with a companion set of experiments can be made. This last set of calculations
is undertaken for both contact conditions and entails computation for a large number of
increments ( ,.., 5000) with computational effort for a single contact condition running at
the level of approx. 20 hr CPU time on the DEC-20 system at Carnegie-Mellon University.
We next review the results of performing such calculations.

3. VERIFICATION

Here we check the numerical convergence ofour approach-spatially, for the first load
step, against the elastic solution and temporally for varying load increments- then
describe a set of experiments which enable the foree/indentation predictive capability of
the analysis to be assessed at high load levels of the order of 105 times the load at yield.

For the grid of Fig. 3, the first, elastic, load step brings 14 nodes into contact. By
expanding for this load step, maps which have 8 and 5 nodes in contact can be generated
and this device thereby provides a geometrically similar sequence of a fine, a medium, and
a coarse map to evaluate convergence on. Since Hertz's solution [8J is available for elastic
lubricated contact we examine the stresses associated with this contact condition for
convergence-stresses rather than displacements because the former are more critical from
a convergence point of view. For all three grids, the normal stress component (1. on the
z-axis is calculated at the nodes there by averaging surrounding elemental values and
compared with the exact result from Huber[l9J after Hertz[8J of

(3.1)

on r =0 for 0 S; z < co, where (10 = - 3P/2na 2 is the contact pressure under the center of
the sphere. The results (Fig. 4) are consistent with a numerically convergent scheme and
demonstrate that the "fine" grid, the one to be used to take calculations forward, has good
resolution.

A more stringent convergence test obtains if we consider the contact pressure, (1. on
o,JII'. Here element values have to be extrapolated to the surface in contrast to on the z-axis
where complete clusters of elements surround nodes by virtue of the axisymmetry. The
extrapolation procedure incurs numerical noise which we smooth with a least squares fit
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Fig. 4. FEM convergence for the elastic stress tT, down the z-axis

of

(3.2)

on aJ.1't', ct.J = I - 4) being the fitted constants. Applying (3.2) to the stresses from all three
grids then allows comparison with the exact expression from Hertz[8],

(3.3)

on a•.1't'. The results (Fig. 5) are again in accord with numerical convergence and indicate
that adequate accuracy is furnished by the grid for ultimate use.

One means of quantifying the convergence shown in Figs. 4 and 5 is to model the error
distribution e by

e = e"hr, (3.4)

wherein h is an average lineal measure of grid size in the region common to all three grids,
eo is the error for unit h, and the exponent c reflects the rate ofconvergence. Applying (3.4)
to the stress results in Figs. 4 and 5 yields

0.75 < c < 1.25.

0.8
-- Exact
__ Fine

0.6 M d'bO --- e lum
...... - - -- Coarse
bN 0.4

0.2

0·°0.0 0.2 0.4 0.6
rio

Fig. S. FEM convergence for the elastic contact pressure

(3.5)
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Hence the convergence is in fair agreement with that expected of constant stress elements
(c -+ I as h -+0).

Convergence with load increment is likewise satisfactory: after 14 load steps the stress
responses throughout the half-space altered by less than 0.1 %on reducing afrom 0.05a
to 0.025a, and by less than 0.01% on further reducing a to 0.0125a. As a result awas set
at 0.025a for the remainder of the calculations.

In view of the apparent lack of any analytical solutions for our contact problem within
the context of incremental elasto-plasticity once yielding commences, we look to a set of
experiments to provide a check on our analysis in this instance. The set of experiments
involves simple indentation tests using a commercially-available, Rockwell, hardness, test
apparatus. In the hardness tests a 1/16 in. (1.59 mm) diameter, spherical indenter made of
high-strength tool steel is forced slowly into smooth flat substrates of annealed 304L
stainless steel under controlled normal loads of 33, 66 and 991bf (147, 294, 441 N). The
diameters of the indentations produced under these loads are readily measured with a
travelling microscope (cf the depths of indentation), two orthogonal measurements being
made on each indentation. No fewer than 10 indentations are made and measured at each
load; Fig. 6 displays the average values so obtained together with horizontal bars which
represent ranges of ± 2s, s being the standard deviation.

Since the indented material is considerably softer than the indenter the experimental
situation approximates the contact problem of interest well and the FEM analysis can be
expected to predict the experimental measurements. Also shown in Fig. 6 therefore are the
results of FEM analyses for both the adhesive and the lubricated contact conditions.
Generally there is little difference between the two contact conditions although the
adhesive condition does appear to promote more numerical noise. This similarity would
seem physically reasonable since the spherical indenter tends to produce deformation
normal to its surface rather than parallel to, so that friction effects playa minor role. As
a consequence of the closeness of the two, only the lubricated condition calculations were
taken out to the upper load levels which correspond to of the order of lOS times the load
at yield, Prt At these high loads levels the approximation underlying the smooth contact
conditions, namely a 2/R 2 ~ 1, is certainly starting to break down. Even so the FEM
predictions track the physically observed response well.

The performance of the FEM analysis with respect to both the convergence checks and

1.0
I-e-I Experimental Data
c FEM, Lubricated Contact
• FEM. Adhesive Contact

c

>.
Q.

"'0 0.6
......
Q.

IIJ

•c

0.2 L:------:l-=-----:-'--:---
0.2 0.3 0.4

aiR

Fig. 6. Comparison of FEM predictions with measured indentation diameters in hardness tests

tThe load at yield P, can be estimated from the elastic solution (Huber[19)) by assembling 'to from expressions
therein and setting it equal to 'ty ; for our particular experimental configuration thi!l gives P,. = 9.6 x 10 - 'tbf
(4.3 x IO- J N);
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the experimental verification support its use to detennine further quantities of interest. The
cxtcnsivc resulLs allending such an investigation are planned for presentation in the second
part of this study.
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